MLL protects CpG clusters from methylation within the Hoxa9 gene, maintaining transcript expression.

نویسندگان

  • Frank E Erfurth
  • Relja Popovic
  • Jolanta Grembecka
  • Tomasz Cierpicki
  • Catherine Theisler
  • Zhen-Biao Xia
  • Tara Stuart
  • Manuel O Diaz
  • John H Bushweller
  • Nancy J Zeleznik-Le
چکیده

Homeobox (HOX) genes play a definitive role in determination of cell fate during embryogenesis and hematopoiesis. MLL-related leukemia is coincident with increased expression of a subset of HOX genes, including HOXA9. MLL functions to maintain, rather than initiate, expression of its target genes. However, the mechanism of MLL maintenance of target gene expression is not understood. Here, we demonstrate that Mll binds to specific clusters of CpG residues within the Hoxa9 locus and regulates expression of multiple transcripts. The presence of Mll at these clusters provides protection from DNA methylation. shRNA knock-down of Mll reverses the methylation protection status at the previously protected CpG clusters; methylation at these CpG residues is similar to that observed in Mll null cells. Furthermore, reconstituting MLL expression in Mll null cells can reverse DNA methylation of the same CpG residues, demonstrating a dominant effect of MLL in protecting this specific region from DNA methylation. Intriguingly, an oncogenic MLL-AF4 fusion can also reverse DNA methylation, but only for a subset of these CpGs. This method of transcriptional regulation suggests a mechanism that explains the role of Mll in transcriptional maintenance, but it may extend to other CpG DNA binding proteins. Protection from methylation may be an important mechanism of epigenetic inheritance by regulating the function of both de novo and maintenance DNA methyltransferases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

c-Myb binds MLL through menin in human leukemia cells and is an important driver of MLL-associated leukemogenesis.

Mixed-lineage leukemia (MLL) is a proto-oncogene frequently involved in chromosomal translocations associated with acute leukemia. These chromosomal translocations commonly result in MLL fusion proteins that dysregulate transcription. Recent data suggest that the MYB proto-oncogene, which is an important regulator of hematopoietic cell development, has a role in leukemogenesis driven by the MLL...

متن کامل

hDOT1L Links Histone Methylation to Leukemogenesis

Epigenetic modifications play an important role in human cancer. One such modification, histone methylation, contributes to human cancer through deregulation of cancer-relevant genes. The yeast Dot1 and its human counterpart, hDOT1L, methylate lysine 79 located within the globular domain of histone H3. Here we report that hDOT1L interacts with AF10, an MLL (mixed lineage leukemia) fusion partne...

متن کامل

Mll partial tandem duplication induces aberrant Hox expression in vivo via specific epigenetic alterations.

We previously identified a rearrangement of mixed-lineage leukemia (MLL) gene (also known as ALL-1, HRX, and HTRX1), consisting of an in-frame partial tandem duplication (PTD) of exons 5 through 11 in the absence of a partner gene, occurring in approximately 4%-7% of patients with acute myeloid leukemia (AML) and normal cytogenetics, and associated with a poor prognosis. The mechanism by which ...

متن کامل

Histone H2B ubiquitin ligase RNF20 is required for MLL-rearranged leukemia.

Mixed-lineage leukemia (MLL) fusions are potent oncogenes that initiate aggressive forms of acute leukemia. As aberrant transcriptional regulators, MLL-fusion proteins alter gene expression in hematopoietic cells through interactions with the histone H3 lysine 79 (H3K79) methyltransferase DOT1L. Notably, interference with MLL-fusion cofactors like DOT1L is an emerging therapeutic strategy in th...

متن کامل

HOXA9 is required for survival in human MLL-rearranged acute leukemias.

Leukemias that harbor translocations involving the mixed lineage leukemia gene (MLL) possess unique biologic characteristics and often have an unfavorable prognosis. Gene expression analyses demonstrate a distinct profile for MLL-rearranged leukemias with consistent high-level expression of select Homeobox genes, including HOXA9. Here, we investigated the effects of HOXA9 suppression in MLL-rea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 105 21  شماره 

صفحات  -

تاریخ انتشار 2008